Tag Archive for: valve

Posts

Chinese marine valve product standard encyclopedia

Marine valves are equipment used to control the pressure, flow and flow direction of fluids in marine pipelines to

ductile iron, DI, butterfly valve, manufacturer, center line, TH valve

ductile iron, DI, butterfly valve, manufacturer, center line, TH valve

meet the environmental conditions of ships. A valve is a control device for a fluid pipeline. Its basic function is to connect or cut off the flow of the pipeline medium, change the flow of the medium, change the flow direction of the medium, adjust the pressure and flow of the medium, and protect the normal operation of the pipeline equipment.

GB/T 584 Marine flange cast steel globe valve; GB/T 585 Marine flange cast steel globe check valve; GB/T 586 Marine flange cast steel check valve; GB/T 587 Marine flange bronze globe valve GB /T; 588 marine flange bronze check valve; GB/T 589 marine flange bronze check valve; GB/T 590 marine flange cast iron stop valve; GB/T 59 industrial marine flange cast iron stop check valve; GB/T 592 Marine flange cast iron check valve; GB/T 593 Marine flange bronze and cast iron packing cock; GB/T 594 Marine external thread forged steel globe valve; GB/T 595 Marine external thread bronze globe valve; GB/ T 596 Marine externally threaded bronze check valve; GB/T 597 Marine externally threaded bronze check valve GB/T 598 Marine externally threaded bronze packing cock; GB/T 599 Marine externally threaded bronze discharge cock; GB/T 1241 Marine External thread forged steel stop check valve; GB/T 1850 marine external thread heavy block quick closing valve; GB/T 1852 marine flange cast steel steam pressure reducing valve; GB/T 1853 marine flange cast steel side stop stop Return valve; GB/T 1854 marine flanged cast iron single-row suction stop valve box; GB/T 1855 marine flanged cast iron single-row suction stop check valve box; GB/T 1856 marine flanged cast iron single-row discharge stop valve box; GB/T 1951 Marine low-pressure male-threaded bronze stop valve; GB/T 19 52 Marine low-pressure male-threaded bronze check valve; GB/T 1953 Marine low-pressure male-threaded bronze stop check valve GB/T 2029 Cast steel suction sea valve; GB /T 2030 Bronze suction sea valve; CB/Z 800-2004 GB/T 2032 Marine flanged fire hydrant; GB/T 2499 Marine flanged cast iron double-row globe valve box; GB/T 3036 Marine central butterfly valve; GB/T 3037 Marine double eccentric butterfly valve; GB/T 5744 marine quick closing valve; GB/T 11691 cast steel suction sea valve (four position); GB/T 11692 bronze suction sea valve (four position); GB/T 11696 marine cast steel vertical valve -Shaped check valve; CB/T 304 flanged cast iron right angle safety valve; CB/T 309 marine internal threaded bronze globe valve; CB/T 310 marine internal threaded bronze straight-through check valve; CB/T 311 marine internal threaded bronze packing cock CB 312 pressure gauge valve; CB/T 465 flanged cast iron gate valve CB/T 466 flanged cast steel gate valve CB/T 467 flanged bronze gate valve CB 541 external thread aluminum alloy packing three-way plug CB 557 bronze stop check discharge valve CB 558Pgl 60 male threaded brass air quick start valve CB 561pgl 60 air bottle stop valve CB 563 male threaded aluminum alloy right angle stop valve CB/T 569 marine PM 60 male thread bronze air stop valve CB/T 569 marine PM 60 male thread bronze air stop valve CB 583 flange brass four-way plug CB 584 with check valve high pressure air right angle shut-off valve specification CB 585 with bottom flange right angle blow-off valve CB 587 brass sea valve CB 588 Pg250 diaphragm air right angle shut-off valve CB 589 with Specification for high pressure air right angle shut-off valve with mounting plate CB 590 Specification for high pressure air right angle shut-off valve with mounting plate CB 591 Specification for high pressure air right angle check valve CB 592 with bottom flange Specification for high pressure air right angle shut-off valve CB 593 with bottom flange Specification for high-pressure air right-angle cut-off check valve CB 594 Air right-angle quick-opening valve CB 595 Pg200 air right-angle throttle valve CB 596 Male threaded steel right-angle stop valve CB 597 Male threaded steel right-angle stop check valve CB 598 with bottom flange Male threaded bronze right-angle globe valve CB/T 601 Self-closing drain valve CB/T 624 Water pressure reducing valve CB/T 627 Impact flange cast steel cut-off check valve CB 852 Pg250 Male threaded bronze air straight-through globe valve CB 853 P30 flange cast steel globe valve CB 854 P30 flange bronze globe valve CB 855 P30 flange bronze globe valve CB 898 blowdown side valve CB 900 vertical check valve CB 901 P30 flange bronze gate valve CB 905 emergency tongue Valve CB 907 Male threaded bronze right-angle liquid safety valve CB 909 Angle flap valve CB 1010 Male threaded stainless steel globe valve CB 1049 Double-sided drive emergency side valve CB 3022 Male threaded air signal safety valve CB/T 30 87 flanged cast steel right-angle sea Valve CB 3107 Marine auxiliary boiler feed water stop check valve CB 3124 Pg16 internal thread bronze gate valve CB/T 3191 High pressure manual ball valve CB 3192 external thread steam bronze right-angle safety valve CB/T 3196 flange cast steel seawater stop valve CB/T 3197 method Blue Cast Steel Seawater Stop It Back Valve CB/T 3265 Liquid Level Gauge Self-closing Valve CB 3297 Bellows Type Traps CB/T 3475 Anti-wave Valve CB/T 3476 Vertical Anti-wave Valve CB/T 3477 Closable Vertical Anti-closing Valve Wave valve CB/T 3478 flange suction check valve CB/T 35 91 flange ductile iron tanker gate valve CB/T 3656 marine air pressure reducing valve CB/T 3819 plate lr_E valve CB/T 3841 side Side boiler relief valve CB/T 3843 pressure relief valve.

TH Valve is a professional manufacturer of butterfly valvegate valvecheck valveglobe valveknife gate valve, ball valve with API, JIS, DIN standard, used in Oil, Gas, Marine industry, Water supply and drainage, fire fighting, shipbuilding, water treatment and other systems, with Nominal Diameter of DN50 to DN1200, NBR/EPDM/VITON, Certificates & Approvals: DNV-GL, Lloyds, DNV, BV, API, ABS, CCS. Standards: EN 593, API609, API6D

Related news /knowledge:
Valve material and valve standards-(6)-gasket material;
The difference between internally and externally threaded valves;
Valve body and material classification;
Valve seat sealing (TH-VSE)

Description of valve pressure& installation direction requirements

As the name implies, the pressure of the valve refers to the pressure that the valve can withstand, that is, the

double-wing-check-valve-3

double-wing-check-valve-3

pressure level of the valve is not lower than the design pressure level of the pipeline. The pressure-bearing direction refers to the closed state of the valve after the valve is applied to the pipeline conditions. The arrow direction of the valve body is the recommended pressure-bearing direction. If it is installed incorrectly, the leakage failure of the valve may not be tightly closed. Generally, it is determined according to the use process or usage conditions. The same direction refers to the pressure-bearing direction (the side with high medium pressure on both sides of the valve gate) and the flow direction, and the opposite direction refers to the pressure-bearing direction (both sides of the valve gate) The side with high medium pressure) is opposite to the flow direction of the medium.

Many valves are directional, such as stop valves, throttle valves, pressure reducing valves, check valves, etc. If they are installed upside down, they will affect the use effect and life (such as throttle valves), or they will not work at all (such as Pressure reducing valve), or even cause danger (such as check valve). Normal valves have direction signs on the valve body; if not, they should be correctly identified according to the working principle of the valve.

The arrow marked on the valve body is the recommended pressure direction of the valve, not the flow direction of the pipeline medium. Valves with two-way sealing function may not be marked with an indicating arrow, or with an arrow, because the valve arrow refers to the recommended pressure direction. It is better to have one direction in the left and right or up and down directions. Usually used by the engineering installation company as the medium flow direction to mark the wrong installation, resulting in leakage or even pipeline accidents;

The valve cavity of the shut-off valve is asymmetrical left and right. The fluid must pass through the valve port from bottom to top, so that the fluid resistance is small (determined by the shape), and the opening is labor-saving (because the medium pressure is upward), and the medium does not press the packing after closing, which is convenient for maintenance . This is the reason why the globe valve cannot be reversed. Other valves also have their own characteristics. The location of the valve installation must be convenient for operation; even if the installation is temporarily difficult, it is necessary to consider the long-term work of the operator. It is best to keep the valve handwheel flush with the chest (usually 1.2 meters away from the operating floor), so that it is easier to open and close the valve. The hand wheel of the floor valve should be upward, not tilted, to avoid awkward operation. To

The valve of the wall machine and the equipment should also leave room for the operator to stand. It is necessary to avoid operating from the sky, especially acid and alkali, toxic media, etc., otherwise it is very unsafe. Do not install the gate valve upside down (that is, the handwheel is downward), otherwise the medium will remain in the valve cover space for a long time, which will easily corrode the valve stem, and it is contraindicated by certain process requirements. At the same time, it is extremely inconvenient to replace the packing. The exposed stem gate valve should not be installed underground, otherwise the exposed stem will be corroded due to moisture. When installing the lift check valve, ensure that its valve flap is vertical for flexible lifting. For the swing check valve, ensure that its pin shaft is level during installation to allow flexible swing. The pressure reducing valve should be installed upright on a horizontal pipe, and not inclined in all directions.

TH Valve is a professional manufacturer of butterfly valvegate valvecheck valveglobe valveknife gate valve, ball valve with API, JIS, DIN standard, used in Oil, Gas, Marine industry, Water supply and drainage, fire fighting, shipbuilding, water treatment and other systems, with Nominal Diameter of DN50 to DN1200, NBR/EPDM/VITON, Certificates & Approvals: DNV-GL, Lloyds, DNV, BV, API, ABS, CCS. Standards: EN 593, API609, API6D

Related news /knowledge:
Working principle diagram of swing check valve;
Installation instructions of double eccentric butterfly valve;
Butterfly valve use principle and installation instructions;
Butterfly valve and its Development history – (1)

What are the main factors affecting valve sealing?

Valve leakage is very common in daily life and industrial production, and the impact is very large. It will cause waste or bring danger to life. For example, the leakage of tap water valve will lead to serious consequences, such as the

ductile iron, DI, butterfly valve, manufacturer, center line, TH valve

ductile iron, DI, butterfly valve, manufacturer, center line, TH valve

chemical industry. Toxic, harmful, flammable, explosive and corrosive media leakage, etc., serious threats to personal safety, property safety and environmental pollution accidents. A valve that relies on external force to rotate and drive to open and close is designed with a sealing device. It is used to install a certain number of packing seals in the packing culvert to achieve a sealing effect, but how about the sealing? Leakage at the packing of the valve is one of the most prone to leakage failure in the valve, but the reasons are largely the following reasons.

1. The structure of the sealing pair

The structure of the sealing pair will change when the temperature or sealing force changes. Moreover, this change will affect and change the mutual force between the sealing pairs, thereby reducing the performance of the valve sealing. Therefore, when choosing a seal, be sure to choose a seal with elastic deformation. At the same time, pay attention to the width of the sealing surface. The reason is that the contact surfaces of the sealing pair cannot be completely matched. When the width of the sealing surface increases, the force required for sealing must be increased.

2. The specific pressure of the sealing surface

The specific pressure of the sealing surface affects the sealing performance of the valve and the service life of the valve. Therefore, the specific pressure of the sealing surface is also a very important factor. Under the same conditions, too much specific pressure will cause damage to the valve, but too little wine will cause valve leakage. Therefore, we need to fully consider the appropriateness of the specific pressure when designing.

3. The physical properties of the medium

The physical properties of the medium also affect the sealing performance of the valve. These physical properties include temperature, viscosity and surface hydrophilicity. The temperature change not only affects the slackness of the sealing pair and changes in the size of the parts, but also has an inseparable relationship with the viscosity of the gas. The gas viscosity increases or decreases as the temperature increases or decreases. Therefore, in order to reduce the influence of temperature on the sealing performance of the valve, when we design the sealing pair, we must design it into a valve with thermal compensation such as an elastic valve seat. Viscosity is related to the permeability of the fluid. When under the same conditions, the greater the viscosity, the smaller the permeability of the fluid. The hydrophilicity of the surface means that when there is a thin film on the metal surface, the thin film should be removed. Because this thin oil film will destroy the hydrophilicity of the surface and block the fluid channel.

4. The quality of the sealing pair

The quality of the sealing pair mainly refers to the selection, matching, and manufacturing accuracy of materials. For example, the valve disc and the sealing surface of the valve seat are very consistent, which can improve the sealing performance. The characteristic of many hoop waviness is its good labyrinth sealing performance.

TH Valve is a professional manufacturer of butterfly valvegate valvecheck valveglobe valveknife gate valve, ball valve with API, JIS, DIN standard, used in Oil, Gas, Marine industry, Water supply and drainage, fire fighting, shipbuilding, water treatment and other systems, with Nominal Diameter of DN50 to DN1200, NBR/EPDM/VITON, Certificates & Approvals: DNV-GL, Lloyds, DNV, BV, API, ABS, CCS. Standards: EN 593, API609, API6D

Related news /knowledge:
Installation requirements for manual butterfly valves;
What is the positive transmission of gears;
Application of low temperature butterfly valve;
Valve flow characteristic curve and classification;

Reasons and solutions for leakage of valve sealing surface

The valve is the most used control component in the fluid system. It can be used to switch or control the flow

U-type-flange-butterfly-valve-2

U-type-flange-butterfly-valve-2

direction and adjust the function. From the simplest cut-off function, the valve is sealed in the machine. Its function is to prevent the medium from In the cavity where the part is located, the joint between the parts leaks outward or prevents external substances from entering the inside. The collar and parts that play a sealing role are called seals or sealing structures, or seals for short. The two joint surfaces are in contact with the seal and play a sealing role. The surface is called the sealing surface. The valve sealing surface is the core part of the valve, and its leakage can generally be divided into the following types, namely, leakage of the sealing surface, leakage at the joint of the sealing ring, leakage caused by the fall of the closure member, and leakage of foreign objects embedded between the sealing surfaces. One of the most extensive uses of valves in pipelines and equipment is to cut off the flow of media. Therefore, its tightness is the main factor that determines whether internal leakage occurs. The valve sealing surface is generally composed of a pair of sealing pairs, one on the valve body and the other on the disc.

The reasons for the leakage of the sealing surface are generally as follows:
1. The sealing surface is unevenly ground and cannot form a tight line;
Second, the top center of the connection between the valve stem and the closing member is suspended, incorrect or worn;
3. The valve stem is bent or incorrectly assembled, which makes the closing part skewed or out of alignment;
4. Improper selection of the sealing surface material or failure to select the valve according to the working conditions, the sealing surface is prone to corrosion, erosion and wear;
5. Surfacing and heat treatment are not operated in accordance with the regulations, due to low hardness, wear, corrosion due to burning of alloy elements, and cracks due to excessive internal stress;
Six, the sealing surface after the surface treatment peels off or loses its original performance due to excessive grinding; Seven, the sealing surface is not tightly closed or the crevices appearing due to cold shrinkage after closing, resulting in intermediate corrosion; Eight, treat the shut-off valve as When the throttle valve and pressure reducing valve are used, the sealing surface is eroded and damaged;
9. The valve has reached the fully closed position and continued to apply excessive closing force, including incorrect use of long levers, and the sealing surface was crushed and deformed;
10. Excessive wear of the sealing surface causes disconnection, that is, the sealing pair cannot be tightly sealed;

Prevention and elimination methods of valve sealing surface leakage:
1. When grinding the sealing surface, the grinding tools, abrasives, emery cloth, sandpaper and other objects should use a reasonable grinding method to be correct, and color inspection should be carried out after grinding. The sealing surface should be free of indentation, cracks, scratches and other defects;
2. The connection between the valve stem and the closing member should meet the design requirements. If the top center does not meet the requirements, it should be trimmed. The top center should have a certain movable clearance, especially the axial gap between the valve stem shoulder and the closing member should not be less than 2 Mm;
3. The bend of the valve stem should be straightened. After the valve stem, stem nut, closing parts and valve seat are adjusted, they should be on a common axis;
Fourth, when selecting a valve or replacing the sealing surface, it should meet the working conditions. After the sealing surface is processed, its corrosion resistance, resistance and scratch resistance should be good;
5. The surfacing welding and heat treatment process should meet the technical requirements of the regulations and specifications. After the sealing surface is processed, the acceptance should be carried out. No defects that affect the use are allowed;
Six, the sealing surface surface firing, nitriding, shed infiltration, plating and other processes must be carried out in strict accordance with the technical requirements of its regulations and specifications. The penetration layer of the sealing surface should not exceed one-third of this layer to damage the plating and penetration layer. In serious cases, the plating layer and penetration layer should be removed and the surface treatment should be performed again. The sealing surface of the surface with high frequency smashing can be repeatedly fired and repaired;
Seven, the valve should be marked when it is closed or opened, and it should be repaired in time if the valve is not tightly closed. For high-temperature valves, some slits that appear to be cold-shrinked after closing should be closed more than once at a certain interval after closing;
8. The valve used as a shut-off valve is not allowed to be used as a throttle valve or a pressure reducing valve. The closing part should be in the fully open or fully closed position. When the flow and pressure of the medium need to be adjusted, the throttle valve and reducing valve should be set separately. Pressure valve;
9. The front opening and closing of the valve should comply with the section “Operation of the valve”. The closing force of the valve is appropriate. The diameter of the handwheel is less than 320mm. Only one person is allowed to operate. For handwheels with a diameter equal to or greater than 320mm, two persons or one person are allowed to operate. Operate with leverage within 500 mm;
10. After the waterline drops, it should be adjusted, and the sealing surface that cannot be adjusted should be replaced;

TH Valve is a professional manufacturer of butterfly valvegate valvecheck valveglobe valveknife gate valve, ball valve with API, JIS, DIN standard, used in Oil, Gas, Marine industry, Water supply and drainage, fire fighting, shipbuilding, water treatment and other systems, with Nominal Diameter of DN50 to DN1200, NBR/EPDM/VITON, Certificates & Approvals: DNV-GL, Lloyds, DNV, BV, API, ABS, CCS. Standards: EN 593, API609, API6D

Related news /knowledge:
Prevention and treatment of valve corrosion;
Application of low temperature butterfly valve;
Valves’ sealing requirements and daily maintenance;
Description of lining material for rubber lining valve.

Description of electric valve connection

Electric valve wiring methods are classified according to different use requirements and different field conditions,

lug type butterfly valve, ductile iron, center lined,

lug type butterfly valve, ductile iron, center lined,

and the wiring methods used by electric actuators with different functions are also different. The user should have an understanding of the relevant knowledge of the wiring, so as to avoid unnecessary failures. On the one hand, the entire circuit will be short-circuited; On the other hand, it may cause huge economic losses caused by the burning of the machine, or even more serious Accident!

Electric valve actuators can generally be divided into AC (AC110V, AC220V, AC380V) and DC (DC24V, DC12V) according to the power supply voltage. According to the control method, they can be divided into active switch type, passive switch type, potentiometer type, explosion-proof type, and adjustable type Wait. (Related products: Electric switching butterfly valve, Electric regulating butterfly valve, Electric switching ball valve, Electric regulating ball valve)

Active switch type, common switch type with source indicator wiring diagram

Active switch type, common switch type with source indicator wiring diagram

Passive switch type, switch type passive contact type with feedback wiring diagram

Passive switch type, switch type passive contact type with feedback wiring diagram

Opening type potentiometer type, switch type with opening type wiring diagram

Opening type potentiometer type, switch type with opening type wiring diagram

Intelligent adjustment type, input and output 4-20mA, intelligent adjustment type wiring diagram

Intelligent adjustment type, input and output 4-20mA, intelligent adjustment type wiring diagram

AC 380V, with passive contact feedback, 380V power supply wiring diagram

AC 380V, with passive contact feedback, 380V power supply wiring diagram

DC24V, exchange of positive and negative switches and passive signal feedback, 24V power supply wiring diagram

DC24V, exchange of positive and negative switches and passive signal feedback, 24V power supply wiring diagram

Note: The above circuit diagram is for reference only, the actual circuit diagram attached to the product shall prevail. In addition, the electric devices of each manufacturer are different, and the wiring methods are also different. Please do not perform operations based on this standard. If a series of problems or related accidents occur, our company will not be responsible. !

TH Valve is a professional manufacturer of butterfly valvegate valvecheck valveglobe valveknife gate valve, ball valve with API, JIS, DIN standard, used in Oil, Gas, Marine industry, Water supply and drainage, fire fighting, shipbuilding, water treatment and other systems, with Nominal Diameter of DN50 to DN1200, NBR/EPDM/VITON, Certificates & Approvals: DNV-GL, Lloyds, DNV, BV, API, ABS, CCS. Standards: EN 593, API609, API6D

Related news /knowledge:
Pneumatic ball valve principle, structure and working principle;
Working principle diagram of electric butterfly valve;
Gate valve structure diagram and working principle;
What are the accessories for pneumatic valves?

The main classification and use conditions of valve sealing materials

The valve seal is the most important part of the entire valve. Its main purpose is to prevent leakage. The valve sealing

soft sealing marine valve, rubber sealing, valve seat parts

soft sealing marine valve, rubber sealing, valve seat parts

seat is also called a sealing ring. It is an organization that directly contacts the medium in the pipeline and prevents the medium from flowing. When the valve is in use, there are a variety of different media in the pipeline, such as liquid, gas, oil, corrosive media, etc., and different valve seals are used in different places and can adapt to various medium.
Then, valve seal materials can be divided into two major categories, namely, metallic materials and non-metallic materials. Non-metallic seals are generally used for pipelines at room temperature and pressure, while metal seals are widely used and can be used for high temperature and high pressure!
The following briefly introduces the use conditions of various sealing materials and the commonly used valve types.

1. Synthetic rubber
Synthetic rubber is better than natural rubber in oil resistance, temperature resistance and corrosion resistance. Generally, the use temperature of synthetic rubber t≤150℃, natural rubber t≤60℃, and rubber is used for the sealing of stop valves, gate valves, diaphragm valves, butterfly valves, check valves, pinch valves and other valves with a nominal pressure of PN≤1MPa. Commonly used types of synthetic rubber: NBR, EPDM, VITON.
2. Nylon
Nylon has the characteristics of low friction coefficient and good corrosion resistance. Nylon is mostly used for ball valves and globe valves with temperature t≤90℃ and nominal pressure PN≤32MPa.
3. Polytetrafluoroethylene Polytetrafluoroethylene is mostly used for globe valves, gate valves, and ball valves with a temperature t≤232℃ and a nominal pressure of PN≤6.4MPa. Short name: PTFE
4. Cast iron
Cast iron is used for gate valves, stop valves, cock valves, etc. for temperature t≤100℃, nominal pressure PN≤1.6MPa, gas and oil. main types: GI, DI
5. Babbitt alloy
Babbitt alloy is used for ammonia stop valves with temperature t-70~150℃ and nominal pressure PN≤2.5MPa.
6. Copper alloy
Commonly used copper alloy materials include 6-6-3 tin bronze and 58-2-2 manganese brass. Copper alloy has good wear resistance, suitable for water and steam with temperature t≤200℃ and nominal pressure PN≤1.6MPa. It is often used in gate valves, globe valves, check valves, plug valves, etc.
7. Chromium stainless steel
Commonly used grades of chromium stainless steel are 2Cr13 and 3Cr13 after quenching and tempering treatment, which has good corrosion resistance. It is commonly used on valves of water, steam, petroleum and other media with temperature t≤450℃ and nominal pressure PN≤32MPa.
8. Chromium nickel titanium stainless steel
The commonly used grade of chromium nickel titanium stainless steel is 1Cr18Ni9ti, which has good corrosion resistance, erosion resistance and heat resistance. It is suitable for steam, nitric acid and other media with temperature t≤600℃ and nominal pressure PN≤6.4MPa, used in stop valves, ball valves, etc.
9. Nitrided steel
The commonly used grade of nitriding steel is 38CrMoAlA, which has good corrosion resistance and scratch resistance after carburizing treatment. Commonly used for power station gate valves with temperature t≤540℃ and nominal pressure PN≤10MPa.
10. Boronizing
Boronizing is directly processed from the valve body or valve clack body material to form the sealing surface, and then boronizing surface treatment, the sealing surface has good wear resistance. Used in power station blowdown valves. To
When the valve is in use, the matters that should be paid attention to are:
1. The sealing performance of the valve should be tested to ensure its performance.

2. Check whether the sealing surface of the valve is worn, and repair or replace it according to the situation.

Valve material and valve standards-(9)- general valve & parts materials

General valve material
The internal material combination specified by API600 for general valve material:

Stem material types hardness sealing surface
seal part no., material type hardness
13Cr 200-275 1 13Cr ≥HB250
4 13Cr ≥HB750
5 or 5A HF ≥HB350
6 13Cr/NiCu ≥HB750/≥HB175
7 13Cr/13Cr ≥HB250/≥HB750
8-8A 13Cr/HF ≥HB250/≥HB350
18Cr-8Ni no require 2 18Cr-8Ni no require
25Cr-20Ni 3 25Cr-20Ni
Nickel copper alloy 9 Nickel copper alloy
11 or 11A Nickel copper alloy/HF no require/≥HB350
18Cr-8Ni-Mo 10 18Cr-8Ni-Mo no require
12 or 12A 18Cr-8Ni-Mo/HF no require/≥HB350
19Cr-29Ni 13 19Cr-29Ni/HF no require
14 or 14A 19Cr-29Ni/HF no require/≥HB350

Commonly used valve trim material combination:

valve stem sealing surface valve stem sealing surface
13Cr 13Cr/13Cr 321 321/321
13Cr 13Cr/STL 321 321/STL
13Cr STL/STL 321 STL/STL
13Cr 13ZCr/Monel 1Cr18Ni9Ti 1Cr18Ni9Ti/1Cr18Ni9Ti
17-4PH STL/STL 1Cr18Ni9Ti 1Cr18Ni9Ti/STL
17-4PH 17-4PH/17-4PH 1Cr18Ni9Ti STL/STL
Monel Monel/Monel 1Cr18Ni12Mo2Ti 1Cr18Ni12Mo2Ti/1Cr18Ni12Mo2Ti
304 304/304 1Cr18Ni12Mo2Ti 1Cr18Ni12Mo2Ti/STL
304 304/STL 1Cr18Ni12Mo2Ti STL/STL
304 STL/STL 20 Alloy 20alloy/20alloy
316 316/316 Hastelloy B Hastelloy B/Hastelloy B
316 316/STL Hastelloy C Hastelloy C/Hastelloy C
316 STL/STL F51 F51/F51
304L 304L/304L F51 F51/STL
304L 304L/STL 38CrMoALA STL/STL
304L STL/STL 25Cr2MoIV A STL/STL
316L 316L/316L 4Cr10Si2Mo STL/STL
316L 316L/STL 4Cr14Ni14W2Mo STL/STL
316L STL/STL Inconel Inconel/Inconel

Commonly used fastener material:

Bolts Nuts Max temp °C
35 25 425
35CrMo 35, 45 425
35CrMo 30CrMo 500
25Cr2MoVA 30CrMo 550
0Cr18Ni9 0Cr18Ni9 600
0Cr17Ni12Mo2 0Cr17Ni12Mo2 600
25Cr2Mo1VA 25Cr2Mo1VA 600
25Cr2MoVA 25Cr2MoVA 600

Matching materials of bolts and nuts for American standard valves:

Bolts nuts application temp
standard grade name standard grade name
ASTM A193 B7 ASTM A194 2H -29/425°C
B7M 2HM -29/425°C NACE standard, anti-sulfer valve
B16 7 -29/593°C
B8 8 -196/700°C
B8M 8M
ASTM A320 L7 4 -46/101°C Cryogenic valve

Chemical composition and mechanical properties of commonly used bolts and nuts for American standard valves:

Chemical composition and mechanical properties of commonly used bolts and nuts for American standard valves

Chemical composition and mechanical properties of commonly used bolts and nuts for American standard valves

Conditions of use of metal gaskets:

material HB max Pressure Mpa(lb) suitable temp °C
10/08 120 2.0-42(150-2500) 450
0Cr13 170 2.0-15(150-900) 540
0Cr18Ni9 160 600
0Cr17Ni12Mo2

Spiral wound gasket service conditions:

metal belt material Non-metallic belt material Pressure grade Mpa (lb) suitable temp °C
0Cr18Ni9 flexible graphite 2.0-26(150-1500) 650
0Cr17Ni12Mo2 flexible graphite
00Cr17Ni14Mo2 PTFE 200

Conditions for use of metal-clad gasket:

Cladding metal material HB filling material pressure Mpa(lb) suitable temp °C
Al L3 40 asbestos 2.0-15(150-900) 200
Co T3 60 300
Galvanized steel sheet 90 400
Galvanized steel sheet 08F
0Cr18Ni9 187 500
00Cr19Ni10
00Cr17Ni14Mo2

Use conditions of flexible graphite composite gasket:

Core board and edging material pressure grade Mpa (lb) suitable temp °C
low-carbon steel 2.0-11(150-600) 450
0Cr18Ni9 2.0-11(150-600) 650

Non-metallic gasket usage conditions:

material name code name pressure Mpa suitable temperature °C
natural rubber NR 2.0 -50/90
Neoprene CR 2.0 -40/100
NBR NBR 2.0 -30/110
Ethylbenzene rubber SBR 2.0 -30/110
EPDM rubber EPDM 2.0 -40/130
fluororubber Viton 2.0 -50/200
Asbestos Rubber Sheet XB350 XB450 NY400 2.0 ≤300 P.T≤650 Mpa °C
Oil-resistant asbestos rubber sheet
Modified or filled with PTFE 5.0 -196/260

Comparison table of common metal materials specified by Chinese, Japanese, German, British, American and international standards:

Comparison table of common metal materials specified by Chinese, Japanese, German, British, American and international standards

Comparison table of common metal materials specified by Chinese, Japanese, German, British, American and international standards

WC carbon steel +A/B/C –WCA,WCB,WCC

WC carbon steel +ABC --WCA,WCB,WCC

WC carbon steel +ABC –WCA,WCB,WCC

Please see the Full documentation at this link: https://www.tanghaivalve.com/wp-content/uploads/2020/09/valve-material-and-valve-standards-Detailed-version.pdf

TH Valve is a professional manufacturer of butterfly valvegate valvecheck valveglobe valveknife gate valve, ball valve with API, JIS, DIN standard, used in Oil, Gas, Marine industry, Water supply and drainage, fire fighting, shipbuilding, water treatment and other systems, with Nominal Diameter of DN50 to DN1200, NBR/EPDM/VITON, Certificates & Approvals: DNV-GL, Lloyds, DNV, BV, API, ABS, CCS. Standards: EN 593, API609, API6D

Related news /knowledge:
Valve material and valve standards-(6)-gasket material;
Knife gate valve introduction and its characteristics;
Valve material and valve standards-(2)-body stem bonnet material;
What is the material of Bolts and nuts of Valve Stem?

Valve material and valve standards-(8)- Monel alloy application

4. Application of Monel alloy:
The A and E levels of M35-1, M35-2 and QQ-N2-88 are usually used to manufacture refined Monel alloy pumps,

buttefly valve stem shaft parts (6)

buttefly valve stem shaft parts (6)

valves and accessories. The B-grade (3.5%Si) Monel alloy with the highest Si content is mainly used to manufacture shafts and wear-resistant rings that require good wear resistance due to its high strength, corrosion resistance and wear resistance. Class D (4.0% Si) Monel alloy is used to manufacture parts that require higher wear resistance and corrosion resistance.
Monel alloy valves have two types: integral and internal. The integral Monel alloy valve means that the valve shell and internal parts are all Monel, which is mainly used in the HF acid regeneration tower part of the alkylation unit of the refinery. Due to the high HF acid regeneration temperature (149°C) and high water content, an overall alloy valve is required. In addition, the overall Monel alloy valve is also used in the production of ashless additives for catalysts in refineries and high-concentration chlor-alkali systems in chlor-alkali plants. Situation.
The Monel alloy internal valve means that the valve housing is made of carbon steel or stainless steel, and the internal valve is made of Moenl alloy. The Monel alloy valve with carbon steel as the shell is mainly used in the low temperature area of ​​the HF calculation system of the alkylation unit of the refinery. The use of carbon steel is good for low temperature (≤71°C) anhydrous hydrofluoric acid (HF) However, carbon steel will form a film on its surface due to corrosion when used in this working condition for a long time. If carbon steel is used in the valve sealing part, the film formed after corrosion will affect the sealing performance of the valve. It should be pointed out that the commonly used Cr13 type sealing material for carbon steel valves cannot resist the corrosion of HF acid, and the internal material is much cheaper for Monel alloy valves. The Monel alloy valve with carbon steel as the shell can also be used in working conditions such as sea water. The valve housing is made of stainless steel Monel alloy internal valve, which is used in ethylene, propylene, liquid oxygen, pure oxygen, sea water and other working conditions. The monolithic Monel alloy valve and Monel alloy internal valve used in the alkylation unit require a pressure level of CL300 from a safety point of view. The pressure level of Monel alloy internal valve for other working conditions is CL150 and CL300. Or PN116-614Mpa etc.
5. Melting and casting of monel alloy:
The smelting and casting technology of Monel alloy is the key to determine whether the qualified Monel alloy castings can be produced. Because Moenl alloy has developed dendrites, shrinkage cavities and porosity, the tendency of gas absorption (hydrogen absorption, oxygen absorption) is great, and it will Sulfurizing chemical reaction occurs with molding materials. From a safety point of view, Monel alloy valves are required to undergo radiographic inspection in accordance with Class A pipeline valves in highly toxic and dangerous media such as hydrofluoric acid, chlorine and hydrogen chloride gas. . Although the American standard points out that casting M35-1 can be welded, in fact its weldability is extremely poor, and the quality of repaired castings is difficult to guarantee. The density of M35-1 alloy is 8163t/m3 (at 20°C), the solidification shrinkage rate is 21mm/m, and the alloy melting point is 1315-1345°C. The Class A and Class E of M35-1, M35-2 and QQ-N2-88 are delivered as cast. Although there are many grades of cast Monel alloy, when used to cast Monel alloy valve castings, M35-1 in ASTMA494 is mainly used.
Cast Monel alloy and deformed Monel alloy have little change in chemical composition (Table 4), but this change satisfies its better deformability for deformation and gold, while it provides better casting for cast alloys. performance. This is the reason why cast Monel alloy grades are used when casting, and deformed Monel alloy grades are used when selecting rolling materials.
Table 4. Commonly used cast and deformed Monel alloy chemical composition of valves (%)

Grade name chemical composition /%
C Mn Si P S Cu Fe Ni others
M35-1 ≤0.35 ≤1.5 ≤1.25 ≤0.03 ≤0.03 26-33 ≤3.5 Ba
Monel400 ≤0.30 ≤2.0 ≤0.5 ≤0.024 Ba ≤2.5 63-70
MonelK500 ≤0.25 ≤1.5 ≤0.5 ≤0.01 Ba ≤2.0 63-70 Al2.5-3.5, Ti0.35-0.85

6. Conclusion
The current U.S. technical standards for Monel alloys include ASTM, SAE, AMS (American Aeronautical Standards Institute), MIL (U.S. Department of Defense Standards), ANSI, ASME and QQ (American Federal Standards). For the Monel alloy of the same grade, different technical specification systems are adopted, not only the representation method of the grade is different, but the number and content of the specification are not completely the same. Usually military products use MIL, QQ or AMS specifications, and civil products use ASTM and ASME specifications.

TH Valve is a professional manufacturer of butterfly valvegate valvecheck valveglobe valveknife gate valve, ball valve with API, JIS, DIN standard, used in Oil, Gas, Marine industry, Water supply and drainage, fire fighting, shipbuilding, water treatment and other systems, with Nominal Diameter of DN50 to DN1200, NBR/EPDM/VITON, Certificates & Approvals: DNV-GL, Lloyds, DNV, BV, API, ABS, CCS. Standards: EN 593, API609, API6D.

Related news /knowledge:
Valve material and valve standards-(7)- Monel alloy;
The difference between carbon steel and cast steel;
Valve body and material classification;
What is the material of the main parts of the butterfly valve?-(1);

Valve material and valve standards-(7)- Monel alloy

Monel alloy for corrosion resistant valve
1. Introduction/overview of Monel alloy:
Monel alloy, cast nickel alloy, Hastelloy alloy, etc. are all materials for making special purpose valves. Monel alloy is a Ni-Cu alloy in nickel-based corrosion-resistant alloys. It was first developed by the US Nickel Company. Its typical composition is 70% Ni and 30% Cu. It is the most widely used nickel-based corrosion-resistant alloy.

Monel alloy not only has high strength and toughness, but also has excellent resistance to corrosion by reducing acid and strong alkali media and sea water, so it is usually used to manufacture and transport hydrofluoric acid (HF), salt water, neutral media, and alkali salts. And reducing acid medium equipment. Monel alloy is also suitable for dry chlorine, hydrogen chloride, high temperature chlorine (425°C) and high temperature hydrogen chloride and other media, but it is not resistant to corrosion by sulfur-containing media and oxidizing media (such as nitric acid, media with high oxygen content), and it is nickel It reacts violently with sulfur and oxygen and easily forms Ni3S2 and NiO.

2. Performance of Monel alloy:
Monel alloy is a Ni-Cu solid solution, where Cu is used as a non-oxidizing resist added to Ni, which improves the corrosion resistance of nickel alloys and acts as a strengthening alloy. The addition of C can improve the casting performance of the alloy, but only 0.15% of C can be dissolved in the alloy at room temperature, and the excess C will be precipitated as a graphite phase. Adding 1.5%-3.5% Fe can also improve the casting performance of the alloy. Adding Mn and Si can improve the mechanical properties of the alloy, especially the content of Si has an important influence on the mechanical and physical properties of the Monel alloy.

3. Classification of Monel alloy:
Monel alloys are classified into casting alloys and deformed alloys.
3.1 Deformation alloy: There are more than 10 types of deformed Monel alloys in the United States, such as Monel400, MonelC, Monel403, Monel404, Monel R2405, Monel406, Monel411, MonelK500, MonelK501 and Monel502. Because Monel has its own representation methods in different American standard systems, SAE and ASTM jointly developed ASTM2SAE unified digital system (unified numbt system2 UNS) in order to facilitate the use and unified management of calculations. In the United States’ UNS, nickel alloys have 5 grades of deformed Monel alloys, including solid solution hardened No5500 (Monel400), No4404 (Monel404) and No4405 (MonelR2405), and precipitation hardened NO5500 (MonelK500) and NO5502 (Monel502). ) Etc. (refer to Table 1). Among them, the deformed Monel alloy commonly used in the manufacture of corrosion-resistant valves is Monel400 and MonelK500.
Table 1. Chemical composition of deformed Monel alloy in United States UNS

Grade name chemical composition/ %
C Si Mn S Ni Fe others
NO4400(Monel400) ≤0.3 ≤0.5 2 ≤0.024 63-70 ≤2.5 Cu base
No4404(Monel404) ≤0.15 ≤0.1 ≤0.1 ≤0.024 52-57 ≤0.5 Cu base, Al≤0.05
No4405(MonelR2405) ≤0.3 ≤0.5 ≤2.0 0.025-0.06 63-70 ≤2.5 Cu base
No5500(MonelK500) ≤0.25 ≤0.5 ≤1.5 ≤0.01 63-70 ≤2 Cu base, Al213-3115,Ti0135-0185
NO5502(Monel502) ≤0.10 ≤0.5 ≤1.5 ≤0.01 63-70 ≤2 Cu base, Al215-315

3.2 Casting alloy: The American cast Monel alloy has five grades of M35-1, M35-2, M-30H, M-25S and M-30C in ASTM A494 (Table 2), which is in the US Federal Standard QQ-N2-88 There are also 5 cast Monel alloys (Table 3).
Table 2. Cast Monel alloy in ASTM A494:

grade name chemical composition /% mechanical properties
C Mn Si P.S Cu Fe Ni Nb Compressive strength/Mpa Tensile strength/Mpa Elongation rate/% HB
M35-1(a) ≤0.35 ≤1.5 ≤1.25 ≤0.03 26-33 ≤3.5 Ba ≥450 ≥170 ≥25
M35-2 ≤0.35 ≤1.5 ≤2.00 ≤0.03 26-33 ≤3.5 Ba ≥450 ≥205 ≥25
M-30H ≤0.30 ≤1.5 2.7-3.7 ≤0.03 27-33 ≤3.5 Ba ≥690 ≥415 ≥10
M-25S ≤0.25 ≤1.5 3.5-4.5 ≤0.03 27-33 ≤3.5 Ba 243-294(b)
M-30C(a) ≤0.30 ≤1.5 1.0-2.0 ≤0.03 26-33 ≤3.5 Ba 1-3 ≥450 ≥225 ≥25 125-130(b)

Notes:
1.Ba=balance, means the balance is all Ni content.
2. To remove the weldability, it should be M3521 or M230C
3. This table is a data parameter
4. HB minimum is 300
Table 3 QQ2N2288 cast Monel alloy:

QQ-N-288 chemical composition /% mechanical properties
C Si Mn Cu Fe Ni Nb Compressive strength/Mpa Tensile strength/Mpa Elongation rate/% HB
A ≤0.35 ≤2.0 ≤1.5 26-33 ≤2.5 62-68 ≥448 ≥224 ≥25 125-150
B ≤0.30 2.7-3.7 ≤1.5 27-33 ≤2.5 61-68 ≥689 ≥455 ≥10 240-290
C ≤0.20 3.3-4.5 ≤1.5 27-31 ≤2.5 ≥60 ≥825 ≥550 ≥10 250-300
D ≤0.25 3.5-4.5 ≤1.5 27-31 ≤2.5 ≥60 ≥300
E ≤0.30 1.0-2.0 ≤1.5 26-33 ≤2.5 ≥60 1-3 ≥448 ≥221 ≥25 125-150

TH Valve is a professional manufacturer of butterfly valvegate valvecheck valveglobe valveknife gate valve, ball valve with API, JIS, DIN standard, used in Oil, Gas, Marine industry, Water supply and drainage, fire fighting, shipbuilding, water treatment and other systems, with Nominal Diameter of DN50 to DN1200, NBR/EPDM/VITON, Certificates & Approvals: DNV-GL, Lloyds, DNV, BV, API, ABS, CCS. Standards: EN 593, API609, API6D.

Related news /knowledge:
Valve material and valve standards-(8)- Monel alloy application;
Detailed introduction of soft sealing butterfly valve-(2);
Code of valve sealing or lining material;
Classification and advantages of gate valve;

 

Valve material and valve standards-(6)-gasket material

Valve Gasket material:
The gasket is used to fill all the unevenness between the two joint surfaces (such as the sealing surface between the valve body and the bonnet) to prevent the medium from leaking between the joint surfaces.

lug type butterfly valve, ductile iron, center lined,

lug type butterfly valve, ductile iron, center lined,

1. Requirements for gaskets: The gasket material has a certain degree of elasticity, plasticity and sufficient strength at working temperature to ensure sealing. At the same time, it must have good corrosion resistance.

2. Types and selection of gasket materials: gaskets are divided into two types: soft and hard. The soft is generally non-metallic materials, such as cardboard, rubber, asbestos rubber sheet, and PTFE. Hardness is generally metal material or metal-coated asbestos, metal and asbestos entangled, etc.

There are many forms of gaskets, including flat, round, oval, tooth-shaped, lens-shaped and other special shapes.
Metal gaskets are generally made of 08, 10, 20 high-quality carbon steel and 1Cr13, 1Cr18Ni9 stainless steel, which require high machining accuracy and surface finish, and are suitable for high temperature and high pressure valves.
Non-metallic gasket materials generally have good plasticity and can be sealed with less pressure, which is suitable for low temperature and low pressure valves.
The gasket material can be selected according to Table 5-4.

Gasket material medium Pressure/Mpa Temp/°C
cardboard water, oil ≤10 40
Oil-impregnated cardboard water, oil ≤10 40
rubber board water,air ≤6 50
asbestos board steam, gas ≤6 450
PTFE corrosive ≤25 200
rubber asbestos board XB-450 water steam, air, gas ≤60 450
XB-350 water steam, air, gas ≤40 350
XB-250 water steam, air, gas ≤15 200
Oil-resistant rubber asbestos sheet oil 160 30
08 steel and XB-450 filling steam 100 450
08 steel and XB-350 filling steam 40 350
1Cr13,0Cr13 and asbestos filling steam 100 600
08 steel and oil-resistant rubber and asbestos filling oil 100 350
copper water steam,air 100 250
aluminium water steam,air 64 350
10steel, 20steel water steam, oil 2– 450
1Cr13 steam 200 550
1Cr3Ni9 steam 200 600

Attached Table 1-2 Common Materials for Valve Trim:

internal parts material suitable temp/°C internal parts material suitable temp/°C
304 -268/316 SS440 60RC -29/427
316 -268/316 17-4PH -40/427
bronze -273/232 6 alloy(Co-Cr) -273/816
inconel alloy -240/649 Electroless Nickel -268/427
K monel alloy -240/482 chrome -273/316
monel alloy -240/482 NBR -40/93
hastelloy B -198/371 Viton -23/204
hastelloy C -198/538 PTFE 200
Titanium alloy -29/316 Nylon -73/93
Nickel alloy -198/316 Polyethylene -73/93
20 alloy -46/316 Neoprene -40/82
SS416 40RC -29/427

Attached Table 1-3 Common materials and operating temperature of valve sealing surface:

Sealing surface material temp range / °C hardness suitable medium
bronze -273/232 water, seawater, air,oxygen,saturated vapor
316L -268/316 14HRC Slightly corrosive and non-impact media like steam, water, oil, gas,liquid gas
17-4PH -40/400 40-50HRC slightly corrosive and impact medium
Cr13 -101/400 37-42HRC slightly corrosive and impact medium
Stellite alloy -268/650 40-45HRC (normal temp); 38HRC (650°C) impact and corrosive medium
Monel alloy KS -240/482 27-35HRC, 30-38HRC Air-free acid solution like alkali, salt,food
Hastelloy CB 371, 538 14HRC, 23HRC Corrosive mineral acid, sulfuric acid, phosphoric acid, wet hydrochloric acid gas, chlorine-free acid solution, strong oxidizing medium
20 alloy -45.6/316 36-61HRC Oxidizing medium and various concentrations of sulfuric acid

Material table of stem, sealing surface, gasket, packing and fastener of cast iron valve:

name standard material name remarks
Vlave stem ASTM A182 F6a
ASTM A276 410,420
GB/T 1220 1Cr13, 2Cr13
sealing surface GB/T 1176 ZCuZn25A15Fe3Mn3 Cast aluminum brass
ZCuZn38Mn2Pb2 Cast manganese brass
ZCuS19Mn2, ZCuAl10Fe3 cast aluminum bronze
GB/T 1220 1Cr13,2Cr13,1Cr18Ni9,1Cr18Ni9Ti
PTFE
rubber
gasket GB/T 3985 XB350,XB450 rubber asbesto sheet
1Cr13/XB450 Spiral wound gasket
GB/T 3985 1Cr18Ni9/XB450
filler PTFE
JB/T 6617 flexible graphite ring
fastener GB/T 699 bolt 35/nut25
GB/T 3077, GB/T 699 bolt 30CrMo, 35CrMo/nut 35,45

TH Valve is a professional manufacturer of butterfly valvegate valvecheck valveglobe valveknife gate valve, ball valve with API, JIS, DIN standard, used in Oil, Gas, Marine industry, Water supply and drainage, fire fighting, shipbuilding, water treatment and other systems, with Nominal Diameter of DN50 to DN1200, NBR/EPDM/VITON, Certificates & Approvals: DNV-GL, Lloyds, DNV, BV, API, ABS, CCS. Standards: EN 593, API609, API6D

Related news /knowledge:
Valve material and valve standards-(5)-packing material;
Valve material and valve standards-(9)- general valve & parts materials;
What is the material of the main parts of the butterfly valve?-(1);
Fasteners, fillers and gasket materials of valves;