Tag Archive for: Schematic diagram

Posts

What is butt welding? (5)- flash butt welding

(4) Flash speed vf A sufficiently large flash speed can ensure the strong and stable flash. However, if vf is too large, the heating zone will be too narrow, which will increase the difficulty of plastic deformation. At the same time, due to the increase in welding current required, it will increase the depth of the fire hole after the lintel blasting, which will reduce the joint quality. The following factors should also be considered when choosing vf:

flash butt welding-schematic diagram

flash butt welding-schematic diagram

1) The composition and performance of the material being welded. For materials with a lot of easily oxidizable elements or good electrical and thermal conductivity, vf should be larger. For example, it is larger when welding austenitic stainless steel and aluminum alloy than when welding low carbon steel;

2) Whether there is preheating. When there is preheating, it is easy to excite the flash, so vf can be improved.

3) There should be a strong flash before upsetting. vf should be large to ensure a uniform metal layer on the end face.

(5) Upsetting flow rate δu δu affects the removal of liquid metal and the magnitude of plastic deformation. If δu is too small, liquid metal will remain in the interface, which will easily form defects such as looseness, shrinkage, cracks, etc.; when δu is too large, the crystal lines will bend severely and reduce the impact toughness of the joint. δu is selected according to the cross-sectional area of ​​the workpiece and increases with the increase of the cross-sectional area.

During upsetting, in order to prevent the interface from oxidizing, the current should not be cut off immediately before the end face interface is closed. Therefore, the upsetting flow should include two parts-current upsetting allowance and non-current upsetting allowance. The former is the latter. 0.5-1 times.

(6) Upsetting speed vu In order to avoid the difficulty of liquid metal removal and plastic metal deformation due to metal cooling in the interface area, and to prevent the end surface metal from oxidizing, the faster the upsetting speed, the better. The minimum upsetting speed depends on the properties of the metal. The minimum upsetting speed for welding austenitic steel is twice that of welding pearlitic steel. The welding of metals with good thermal conductivity (such as aluminum alloy) requires a high upsetting speed (150-200mm/s). For the same metal, if the temperature gradient in the interface area is large, the upsetting speed needs to be increased due to the fast cooling rate of the joint.

(7) The upsetting pressure Fu Fu is usually expressed by the pressure per unit area, that is, the upsetting pressure. The size of the upsetting pressure should ensure that the liquid metal in the joint can be extruded and a certain degree of plastic deformation will be produced at the joint. If the upsetting pressure is too small, the deformation will be insufficient and the strength of the joint will decrease; if the upsetting pressure is too high, the deformation will be too large, the crystal lines will bend seriously, and the impact toughness of the joint will be reduced.

The size of the upsetting pressure depends on the metal properties, temperature distribution characteristics, upsetting allowance and speed, and the shape of the workpiece section. High-temperature and strong metals require large upsetting pressure. Increasing the temperature gradient will increase the upsetting pressure. Because the high flash speed will increase the temperature gradient, when welding metals with good thermal conductivity (copper, aluminum alloy), a large upsetting pressure (150-400Mpa) is required.

(8) Preheating flash butt welding parameters In addition to the above process parameters, preheating temperature and preheating time should also be considered.

The preheating temperature is selected according to the cross-section of the workpiece and the material properties. When welding low carbon steel, it generally does not exceed 700-900 degrees. As the cross-sectional area of ​​the workpiece increases, the preheating temperature should be increased accordingly.

The preheating time is related to the power of the welding machine, the size of the workpiece section and the performance of the metal, and it can be changed in a relatively large range. The preheating time depends on the required preheating temperature.

In the preheating process, the amount of shortening caused by preheating is very small, and it is not specified as a process parameter.

(9) The clamping force Fc of the clamp must ensure that the workpiece does not slip during the upsetting. Fc is related to the upsetting pressure Fu and the friction coefficient f between the workpiece and the clamp. Their relationship is: Fc≥Fu/2f. Usually F0=(1.5-4.0) Fu, the lower limit is taken for low carbon steel with compact section, and the upper limit is taken for cold-rolled stainless steel plate. When the clamp is equipped with a top support device, the tightening force can be greatly reduced, and Fc=0.5Fu is sufficient at this time.

3. Workpiece preparation

The preparation of the workpiece for flash butt welding includes: the geometry of the end face, the processing of the blank end and the surface cleaning.

When flash butt welding, the geometry and size of the butt surface of the two workpieces should be basically the same. Otherwise, the heating and plastic deformation of the two workpieces will not be guaranteed to be consistent, which will affect the quality of the joint. In production, the difference in diameter of round workpieces should not exceed 15%, and the difference between square workpieces and tubular workpieces should not exceed 10%.

When flashing butt welding large-section workpieces, it is best to chamfer the end of a workpiece to increase the current density to facilitate the laser flash. In this way, the secondary voltage can be increased without preheating or initial flashing.

The butt welding blank end can be processed on a shear, punch, lathe, or plasma or gas flame cutting, and then the end face can be removed.

During flash butt welding, the end metal is burned out during flash, so the end face cleaning is not very strict. However, the cleaning requirements for the contact surface between the clamp and the workpiece should be the same as for resistance butt welding.

What is butt welding? (3)- flash butt welding

Flash butt welding

Flash butt welding can be divided into continuous flash butt welding and preheated flash butt welding. Continuous flash butt welding consists of two main stages: the flash stage and the upsetting stage. Preheating flash butt welding only adds a preheating stage before the flashing stage.

flash butt welding-schematic diagram

flash butt welding-schematic diagram

One, two stages of flash butt welding

1, flash stage

The main function of flash is to heat the workpiece. In this stage, the power is turned on first, and the end faces of the two workpieces are slightly contacted, forming many contact points. When the current passes, the contact points melt and become liquid metal lintels connecting the two ends. Due to the extremely high current density in the liquid lintel, the liquid metal in the lintel evaporates and the lintel blasts. With the slow advancement of the movable clamp, the lintels are also continuously produced and blasted. Under the action of vapor pressure and electromagnetic force, liquid metal particles are continuously ejected from the interface. The formation of a rapid stream of sparks-flash.

In the flashing process, the workpiece gradually shortens and the temperature of the tip gradually rises. As the end temperature increases, the blasting speed of the lintel will increase, and the advancing speed of the movable clamp must be gradually increased. Before the flashing process ends, a layer of liquid metal must be formed on the entire end surface of the workpiece, and the metal must reach the plastic deformation temperature at a certain depth.

Due to the strong oxidation of metal vapor and metal particles generated during lintel blasting, the oxygen content of the gas medium in the interface gap is reduced, and its oxidation capacity can be reduced, thereby improving the quality of the joint. But the flash must be stable and strong. The so-called stability means that no open circuit or short circuit occurs during the flashing process. The open circuit will weaken the self-protection effect of the weld, and the joint will be easily oxidized. A short circuit will overburn the workpiece and cause the workpiece to be scrapped. The so-called strong means that there are quite a lot of lintel blasts per unit time. The stronger the flash, the better the self-protection of the weld, which is especially important in the later flash.

2, upsetting stage

At the end of the flashing stage, immediately apply sufficient top pressure to the workpiece, and the interface gap is rapidly reduced, and the lintel stops blasting, that is, the upsetting stage is entered. The function of upsetting is to seal the gap between the end face of the workpiece and the fire hole left by the liquid metal lintel after blasting, while extruding the liquid metal and oxide inclusions on the end face, so that the clean plastic metal is in close contact, and the joint area produces a certain degree of plasticity Deformation to promote the progress of recrystallization, form common crystal grains, and obtain a strong joint. Although there is molten metal during the heating process in flash butt welding, it is actually welding in a plastic state.

Preheating flash butt welding is to heat the workpiece with intermittent current pulses before the flash phase, and then enter the flash and upsetting phase. The purpose of preheating is as follows:

(1) Reduce the required power to weld workpieces with larger cross-sectional area on a small capacity welder, because when the capacity of the welder is insufficient, it is impossible to stimulate continuous flashing without preheating the workpiece to a certain temperature. process. At this time, preheating is a last resort.

(2) Reduce the cooling rate after welding. This will help prevent the quenched structure and cracks of the quenched steel joint during cooling.

(3) Shortening the flash time can reduce the flash margin and save precious metals.

The shortcomings of preheating are:

(1) Extend the welding cycle and reduce the productivity;

(2) Make the process automation more complicated;

(3) Preheating control is difficult. If the preheating degree is inconsistent, the stability of the joint quality will be reduced.

TH Valve is a professional manufacturer of butterfly valvegate valvecheck valveglobe valveknife gate valve, ball valve with API, JIS, DIN standard, used in Oil, Gas, Marine industry, Water supply and drainage, fire fighting, shipbuilding, water treatment and other systems, with Nominal Diameter of DN50 to DN1200, NBR/EPDM/VITON, Certificates & Approvals: DNV-GL, Lloyds, DNV, BV, API, ABS, CCS. Standards: EN 593, API609, API6D

Related news/knowledge:
What is butt welding? (5)- flash butt welding;
What is butt welding? (4)- flash butt welding;
What is butt welding? (7)- Flash butt welding of common metals;
What is butt welding? (1)

What is butt welding? (2)

2. Welding cycle, process parameters and workpiece preparation for resistance butt welding

1, welding cycle

During resistance butt welding, the two workpieces are always pressed tightly. When the end face temperature rises to the welding temperature Tω, the distance between the end faces of the two workpieces is as small as a few

resistance butt welding-Schematic diagram

resistance butt welding-Schematic diagram

angstroms. The atoms between the end faces interact to produce common crystal grains on the joint. Form joints. There are two welding cycles in resistance butt welding: equal pressure and increased forging pressure. The former is simple and easy to implement. The latter is conducive to improving the quality of welding, and is mainly used for

resistance butt welding of alloy steel, non-ferrous metals and their alloys. In order to obtain sufficient plastic deformation and further improve the quality of the joint, a current upsetting procedure should be set.

2, process parameters

The main process parameters of resistance butt welding are: extension length, welding current (or welding current density), welding energization time, welding pressure and upsetting pressure.

(1) Overhang length l0 is the length of the workpiece over the end face of the clamp electrode. When selecting the extension length, two factors should be considered: the stability of the workpiece during upsetting and the heat dissipation to the clamp. If l0 is too long, the workpiece will lose stability during upsetting. If l0 is too short, due to the enhanced heat dissipation to the jaws, the workpiece will be cooled too strongly, which will increase the difficulty of plastic deformation. For the workpiece with diameter d, generally low carbon steel: l0=(0.5-1)d, aluminum and brass: l0=(1-2)d, copper: l0=(1.5-2.5)d.

(2) Welding current Iω and welding time tω In resistance butt welding, the welding current is often expressed by the current density jω. jω and tω are the two main parameters that determine the heating of the workpiece. The two can be adjusted accordingly within a certain range. High current density and short time (strong condition) can be used, or low current density and long time (weak condition) can be used. But when the condition is too strong, it is easy to produce incomplete penetration defects; when it is too soft, it will cause serious oxidation of the interface end surface, coarse grains in the joint area, and affect the strength of the joint.

(3) The welding pressure Fω and the upsetting pressure Fu, Fω have an effect on the heat generation and plastic deformation of the joint. Reducing Fω is good for heat generation, but not good for plastic deformation. Therefore, it is easy to use a smaller Fω for heating and a much larger Fu for upsetting. However, Fω should not be too low, otherwise it will cause splashing, increase end surface oxidation, and cause looseness near the interface.

3. Workpiece preparation

In resistance butt welding, the shape and size of the end faces of the two workpieces should be the same to ensure that the heating and plastic deformation of the workpieces are consistent. The end surface of the workpiece and the surface in contact with the clamp must be strictly cleaned. Oxide and dirt on the end face will directly affect the quality of the joint. The oxides and dirt on the surface of the workpiece in contact with the clamp will increase the resistance of the contact, which will cause the surface of the workpiece to burn, increase the wear of the jaws, and increase the power loss.

The workpiece can be cleaned by mechanical means such as grinding wheels, wire brushes, etc., or pickling.

Oxide inclusions easily occur in resistance welding joints. For rare metals, certain alloy steels and non-ferrous metals with high welding quality requirements, protective atmospheres such as argon and helium are often used to solve the problem.

Although resistance butt welding has the advantages of smooth joints, small burrs, and simple welding process, the mechanical properties of the joints are low, and the preparation of the end face of the workpiece is high, so it is only used for butt joints of small section (less than 250mm2) metal profiles.